Логотип Мисленого древа

МИСЛЕНЕ ДРЕВО

Ми робимо Україну – українською!

НАУКА

ОСВІТА

ЛІТЕРА
ТУРА

Лист на сайт
Версія для друку
Стрічка новин (RSS)
Наука / Економіка / Статистичні індекси в… / Глава I. Сутність, межі та… / Зв'язок індексного методу з іншими методами статистики

Статистичні індекси
в економічних дослідженнях

Глава I. Сутність, межі та особливості
індексного методу

Зв'язок індексного методу
з іншими методами статистики

Андрієнко В.Ю.

Принципова відмінність індексного методу від найбільш близьких до нього методів відносних і середніх величин полягає в системному підході до дослідження явищ на основі об’єктивно існуючого між ними взаємозв’язку. Разом з тим, у даних методів є формальна схожість, що зумовлює дискусії про те, до яких методів відносити ті або інші схожі прийоми обробки статистичних даних. Зокрема, існує багато точок зору на так звану проблему індивідуальних індексів, тобто індексів, що відносяться до окремих елементів сукупності.

Досі немає чіткого визначення індивідуальних індексів, хоч в індексному методі вони використовуються досить широко. Наведемо деякі приклади. Л.С.Казінець визначає індивідуальні індекси як відносні показники, обчислені "за ознакою однорідності натуральної форми одиниць сукупності, що вивчається; складні явища, на його думку, можуть бути розкладені на такі прості елементи, які певною мірою є однорідними. Показники, що характеризують зміну більш або менш однорідних елементів складного явища, називаються індивідуальними індексами" [6, с. 20] Інакше кажучи, тут має місце повна ідентичність між категоріями "відносні величини" та "індивідуальні індекси".

Більш виважену позицію займає Г.Бакланов, який стверджує, що "не всяка відносна величина може бути названа індексом. Індексами можна вважати лише такі відносні показники, які характеризують зміну явищ у часі (тобто динаміку), результат порівняння явищ у просторі (територіальні індекси). Характерно, що, обчислюючи індекси, ми зіставляємо у часі або в просторі явища одного і того ж економічного змісту. Не можна тому вважати індексами відносні показники структури (відношення частини до цілого), інтенсивності або координації" [2, с. 4-5]. Звідси випливає, що відмінності між індексами і відносними величинами існують, але лише в певній частині. Однак, там, де має місце співвідношення "явищ одного і того ж економічного змісту", відмінності між ними ніби зникають. У зв’язку з цим правомірно виникає запитання: якщо між індивідуальними індексами і відносними величинами або їх частиною відмінностей дійсно немає, навіщо ж вводити в практику подвійну термінологію і навіщо ці показники повторюються в декількох розділах теорії статистики під різними найменуваннями?

Отже, є підстави визнати, що відмінність між індивідуальними індексами і відносними величинами існує, але знову-таки, все залежить від того, який підхід до дослідження динаміки явищ: системний або позасистемний. При системному підході відносні величини неминуче перетворюються в індивідуальні індекси, оскільки за ними обчислюються складні індекси, що відображають динаміку двох і більше взаємопов’язаних явищ. Індивідуальні індекси не являють собою показників особливого типу. Називаючи ту або іншу відносну величину індивідуальним індексом, статистик лише підкреслює, що ця величина призначена для розрахунку складного індексу.

Аналогічне перетворення відносних величин в індивідуальні індекси відбувається також тоді, коли відносна зміна явища відображається за допомогою індексів його елементів. Наприклад, якщо потрібно визначити відносну зміну фонду заробітної плати при відомих індексах (темпах зростання) середньої заробітної плати і середній чисельності працівників, що отримали дану заробітну плату, то задача, як відомо, вирішується перемноженням вказаних індексів. Характерно, що в таких випадках оперуємо тільки відносними величинами і проте, маємо на увазі не метод відносних величин, а індексний метод. Пояснюється це тим, що відносні величини виступають в певній взаємопов’язаній системі. Тому одні і ті ж показники мають дві назви: якщо вони поза системою, то їх називають відносними величинами, а якщо в системі, – індексами. З таким положенням, на наш погляд, можна погодитися, бо воно дозволяє провести більш чітку межу між згаданими методами.

Використовуючи здатність звичайних відносних величин перетворюватися в систему індексів, можна обчислити умовні показники, які не можна виразити в якісній формі. Таким шляхом, наприклад, розраховуються індекси реальної заробітної плати, які прямо пропорційні індексам номінальної заробітної плати і зворотно пропорційні індексам цін. Цілком очевидно, що в цій індексній системі індекс номінальної заробітної плати, коли він взятий ізольовано, не можна назвати індексом, бо він являє собою звичайний коефіцієнт динаміки (темп зростання) середньої заробітної плати.

Цей показник, що розглядається поза системою, не містить ніяких ознак індексу, чого, наприклад, не можна сказати про індекс цін різнорідних товарів. Останній показник, безперечно, є індексом у будь-якому випадку, тому що обчислюється він тільки індексним методом.

Таким чином, індексний метод тісно пов’язаний з методом відносних величин в тому значенні, що він використовує звичайні відносні величини для вирішення специфічних задач, що мають на меті охарактеризувати взаємозв’язок явищ або кількісно виразити які-небудь її наслідки. З цією ж метою індексний метод "підтримує" зв’язок і з методом середніх величин, зокрема, він використовує метод середніх для визначення зведених індексів на основі індивідуальних.

У індексній теорії виникає багато суперечок, зумовлених відривом форми індексів від їх змісту і призначення. Більше того, в окремих дослідженнях форма настільки превалює над змістом, що останній видається чимось другорядним або взагалі неіснуючим. Наприклад, Г.Бакланов пише: "зіставлення двох середніх величин… прийнято називати індексом змінного складу, хоч в цьому випадку одержимо коефіцієнт динаміки. Нарешті, відношення двох сум, якщо його можна представити у вигляді відношення двох сум добутку певних величин, звичайно, називається індексом без всяких застережень. Так, відношення двох сум касової виручки У:У0, якщо його представити як S x1d1:S x0d0, в статистичній літературі частіше за все називають індексом, хоч це також звичайний коефіцієнт динаміки" [2, с. 6].

На наш погляд, в полеміці про відмінність між індексами і коефіцієнтами динаміки форма відображення величин відіграє не головну роль, оскільки за формою не можна однозначно визначити, який показник виходить внаслідок зіставлення величин – індекс чи коефіцієнт динаміки. Формально будь-яке явище можна представити у вигляді добутку певних елементів, але це не означає, що відносини всіх явищ можна таким чином звести до індексів. Однак, це і не означає, що співвідношення реальних величин на відміну від умовних завжди дає в результаті звичайний коефіцієнт динаміки. Відповідно до прийнятої нами концепції одна і та ж форма відображення вихідних даних в одному випадку означає розрахунок індексів, в іншому розрахунок коефіцієнтів динаміки. Якщо це вихідне положення продиктоване необхідністю подальшого взаємопов’язаного аналізу зміни даного явища з показниками зміни його елементів, то, безперечно, ми маємо справу з індексним методом, і показник співвідношення таких величин називаємо індексом. У такому випадку розгорнуте відображення складних явищ типу S x1d1:S x0d0 диктується постановкою задачі. У всіх інших випадках, коли ми обчислюємо позасистемний показник співвідношення величин, він, незалежно від форми відображення величин, що зіставляються, буде являти собою звичайний коефіцієнт динаміки або порівняння.

І ще один аспект форми відображення індексних розрахунків. Прийняті в статистиці поняття "середні арифметичні" і "середні гармонічні" індекси торкаються зовнішньої, формальної сторони їх обчислення і затушовують справжню економічну суть цих розрахунків. Насправді вони є зведеними, узагальнюючими індексами, нічим не відмінними від індексів, обчислених в агрегатній формі. Різниця полягає лише в методології обчислення. При агрегатній формі дотримується традиційно індексна методологія, а в інших випадках використовується методологія середніх величин (арифметичної або гармонічної). Іншими словами, вони відрізняються за формою, але схожі по суті. Тому всі такі індекси потрібно називати зведеними (загальними, узагальнюючими), враховуючи ту обставину, що розрахунок їх може бути різним. Наприклад, твердження І.Суслова "індекси, що отримуються першим способом, називаються агрегатними, а ті що отримуються другим способом – середніми" [12, с. 254] доцільніше викласти так: загальні індекси, що отримуються будь-яким способом, є узагальнюючими показниками, хоча в одному випадку вони обчислюються власне індексним методом, в іншому – методом середніх зважених величин.

При такому підході процес побудови формул зважених індексів буде "сферою дії" не індексного методу, а теорії середніх величин. Одночасно індексний метод "позбудеться" проблеми "зважування" індивідуальних індексів, яка, безперечно, є атрибутом методу середніх величин, а не індексного методу. Індексному методу "залишиться" тільки результат обчислення – зведений індекс. Саме так, на наш погляд, потрібно проводити межу між методом середніх величин та індексним методом. Отже, занотуємо як висновок: для порівняння явищ недостатньо застосовувати тільки середні або тільки відносні величини. Виходячи із взаємопов’язаного існування явищ виникає необхідність в інших методах їх порівняння, а саме в таких, які являли б собою "певний синтез як середніх, так і відносних величин". Такі методи і носять назву індексного, а результати їх застосування називаються індексами [13, с. 363]. За різними формами розрахунків стоїть в кінцевому підсумку специфічна мета – охарактеризувати кількісну залежність між явищами відповідно до їх реальної причинно-наслідкової природи існування.

Опубліковано : Андрієнко В.Ю. Cтатистичні індекси в економічних дослідженнях. – К. : 2004 р., с. 13 – 17.

Попередній розділ | Зміст | Наступний розділ

Сподобалась сторінка? Допоможіть розвитку нашого сайту!

© 1999 – 2019 Група «Мисленого древа», автори статей

Передрук статей із сайту заохочується за умови
посилання (гіперпосилання) на наш сайт

Сайт живе на

Число завантажень : 4413

Модифіковано : 17.08.2012

Якщо ви помітили помилку набору
на цiй сторiнцi, видiлiть її мишкою
та натисніть Ctrl+Enter.